Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique
نویسندگان
چکیده
We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end-on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles.
منابع مشابه
The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique
Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin-section study (Roberts, K., M. Gurney-Smith, and ...
متن کاملQuick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells
The cytoskeleton that supports microvilli in intestinal epithelial cells was visualized by the quick-freeze, deep-etch, rotary-replication technique (Heuser and Salpeter. 1979. J. Cell Biol. 82: 150). Before quick freezing, cells were exposed to detergents or broken open physically to clear away the granular material in their cytoplasm that would otherwise obscure the view. After such extractio...
متن کاملThe molecular structure of microtubule-associated protein 1A (MAP1A) in vivo and in vitro. An immunoelectron microscopy and quick-freeze, deep-etch study.
We studied the distribution of microtubule-associated protein 1A (MAP1A) in Purkinje cell dendrites by means of electronmicroscopic immunocytochemistry, using a monoclonal antibody (McAb) against MAP1A; this was combined with the observation of the 3-dimensional cytoskeletal ultrastructure in dendrites via the quick-freeze, deep-etch technique (QF-DE). We prepared a McAb against rat brain MAP1....
متن کاملMorphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts.
PURPOSE To characterize the structure and morphology of extracellular matrix (ECM) synthesized by untransformed, cultured human corneal fibroblasts in long-term cultures. METHODS Human corneal stromal keratocytes were expanded in transwell culture in the presence of fetal bovine serum and a stable derivative of vitamin C. The cells were allowed to synthesize a fibrillar ECM for up to 5 weeks....
متن کاملThe Chlamydomonas Cell Wall Glycoproteins Analyzed by the Technique and Its Constituent Quick-Freeze, Deep-Etch
Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin-section study (Roberts, K., M. Gurney-Smith, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 105 شماره
صفحات -
تاریخ انتشار 1987